Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38667147

RESUMO

Measuring the transit time of a cell forced through a bottleneck is one of the most widely used techniques for the study of cell deformability in flow. It in turn provides an accessible and rapid way of obtaining crucial information regarding cell physiology. Many techniques are currently being investigated to reliably retrieve this time, but their translation to diagnostic-oriented devices is often hampered by their complexity, lack of robustness, and the bulky external equipment required. Herein, we demonstrate the benefits of coupling microfluidics with an optical method, like photocells, to measure the transit time. We exploit the femtosecond laser irradiation followed by chemical etching (FLICE) fabrication technique to build a monolithic 3D device capable of detecting cells flowing through a 3D non-deformable constriction which is fully buried in a fused silica substrate. We validated our chip by measuring the transit times of pristine breast cancer cells (MCF-7) and MCF-7 cells treated with Latrunculin A, a drug typically used to increase their deformability. A difference in transit times can be assessed without the need for complex external instrumentation and/or demanding computational efforts. The high throughput (4000-10,000 cells/min), ease of use, and clogging-free operation of our device bring this approach much closer to real scenarios.


Assuntos
Dispositivos Lab-On-A-Chip , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas , Microfluídica
2.
Commun Biol ; 6(1): 1148, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952040

RESUMO

Optical stimulation and control of muscle cell contraction opens up a number of interesting applications in hybrid robotic and medicine. Here we show that recently designed molecular phototransducer can be used to stimulate C2C12 skeletal muscle cells, properly grown to exhibit collective behaviour. C2C12 is a skeletal muscle cell line that does not require animal sacrifice Furthermore, it is an ideal cell model for evaluating the phototransducer pacing ability due to its negligible spontaneous activity. We study the stimulation process and analyse the distribution of responses in multinuclear cells, in particular looking at the consistency between stimulus and contraction. Contractions are detected by using an imaging software for object recognition. We find a deterministic response to light stimuli, yet with a certain distribution of erratic behaviour that is quantified and correlated to light intensity or stimulation frequency. Finally, we compare our optical stimulation with electrical stimulation showing advantages of the optical approach, like the reduced cell stress.


Assuntos
Fibras Musculares Esqueléticas , Robótica , Animais , Fibras Musculares Esqueléticas/metabolismo , Contração Muscular/fisiologia , Estimulação Elétrica/métodos , Luz
3.
Sensors (Basel) ; 23(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005576

RESUMO

Statistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not suitable for use in point-of-care (PoC) testing. Microfluidic flow cytometers, on the other hand, are small, cheap and can be used for on-site analyses. However, in order to detect small particles, they require complex geometries and the aid of external optical components. To overcome these limitations, here, we present an opto-fluidic flow cytometer with an integrated 3D in-plane spherical mirror for enhanced optical signal collection. As a result, the signal-to-noise ratio is increased by a factor of six, enabling the detection of particle sizes down to 1.5 µm. The proposed optofluidic detection scheme enables the simultaneous collection of particle fluorescence and scattering using a single optical fiber, which is crucial to easily distinguishing particle populations with different optical properties. The devices have been fully characterized using fluorescent polystyrene beads of different sizes. As a proof of concept for potential real-world applications, signals from fluorescent HEK cells and Escherichia coli bacteria were analyzed.


Assuntos
Técnicas Analíticas Microfluídicas , Dispositivos Ópticos , Citometria de Fluxo/métodos , Técnicas Analíticas Microfluídicas/métodos , Razão Sinal-Ruído
4.
Sci Rep ; 13(1): 14671, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673905

RESUMO

Accurately control of the position of a fluid and particle within lab-on-a-chip platform is a critical prerequisite for many downstream analysis processes, such as detection, trapping and separation, moving the sensing at the single-particle level. With the development of microfluidic fabrication technology, particle/cell focusing has shifted from two to three dimensions. 3D hydrodynamic focusing, which sorts and aligns the incoming cloud of particles so that they pass through the interrogation area one by one, enables new possibilities and breakthroughs in the single-cell analysis system. Despite the excellent results shown in literature, there is still a lack of a device that can simultaneously fulfilling the requirements of high throughput, compactness, high integrability, and ease of use operation to become a widely accepted work center for biomedical research and clinical applications. Here, we proposed a unique 3D flow focusing microfluidic device buried in fused silica substrate that potentially combines all this advantages. By designing a sample channel suspended inside a larger buffer channel, manufactured by exploiting the laser-assisted micromachine technique, a not size-dependent focusing capability is shown. A spatially and temporally stable central flow of a mixture of 15 µm and 6 µm PS particles to a 1 µm PS microsphere solution has been obtained with high accuracy. Finally, to test the achievable focusing resolution, the chip was tested for the detection of Escherichia Coli bacteria in water solution as proof of concept of biological application.

5.
J Biomed Opt ; 28(7): 075004, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37484974

RESUMO

Significance: The number of injections administered has increased dramatically worldwide due to vaccination campaigns following the COVID-19 pandemic, creating a problem of disposing of syringes and needles. Accidental needle sticks occur among medical and cleaning staff, exposing them to highly contagious diseases, such as hepatitis and human immunodeficiency virus. In addition, needle phobia may prevent adequate treatment. To overcome these problems, we propose a needle-free injector based on thermocavitation. Aim: Experimentally study the dynamics of vapor bubbles produced by thermocavitation inside a fully buried 3D fused silica chamber and the resulting high-speed jets emerging through a small nozzle made at the top of it. The injected volume can range from ∼0.1 to 2 µL per shot. We also demonstrate that these jets have the ability to penetrate agar skin phantoms and ex-vivo porcine skin. Approach: Through the use of a high-speed camera, the dynamics of liquid jets ejected from a microfluidic device were studied. Thermocavitation bubbles are generated by a continuous wave laser (1064 nm). The 3D chamber was fabricated by ultra-short pulse laser-assisted chemical etching. Penetration tests are conducted using agar gels (1%, 1.25%, 1.5%, 1.75%, and 2% concentrations) and porcine tissue as a model for human skin. Result: High-speed camera video analysis showed that the average maximum bubble wall speed is about 10 to 25 m/s for almost any combination of pump laser parameters; however, a clever design of the chamber and nozzle enables one to obtain jets with an average speed of ∼70 m/s. The expelled volume per shot (0.1 to 2 µl) can be controlled by the pump laser intensity. Our injector can deliver up to 20 shots before chamber refill. Penetration of jets into agar of different concentrations and ex-vivo porcine skin is demonstrated. Conclusions: The needle-free injectors based on thermocavitation may hold promise for commercial development, due to their cost and compactness.


Assuntos
Hidrodinâmica , Injeções a Jato , Vacinação , Animais , Humanos , Ágar/química , Injeções a Jato/normas , Pele , Suínos , Vacinação/instrumentação , Modelos Anatômicos , Fotografação
6.
Lab Chip ; 23(6): 1576-1592, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688523

RESUMO

Biodegradable stent coatings have shown great potential in terms of delivering drugs to a damaged vessel wall, and their release profiles are key elements governing the overall performance of drug-eluting stents (DESs). However, release and degradation kinetics are usually not tested under simulated physiological conditions or in dynamic environments, both essential aspects in the design of novel DESs. To bridge this gap, fused silica-based microfluidic systems, with either round or square channel cross-sections, were designed to mimic the microenvironment of a stented vessel. In particular, we fabricated and characterized microfluidic chips based on customizable channels, which were spray-coated with a naturally-derived, rutin-loaded zein solution, to perform a comprehensive study under flow conditions. Dynamic assays after 6 hours showed how the degradation of the zein matrix was affected by the cross-sectional conformation (∼69% vs. ∼61%, square and round channel, respectively) and the simulated blood fluid components (∼55%, round channel with a more viscous solution). The released amount of rutin was ∼81% vs. ∼77% and ∼78% vs. ∼74% from the square and round channels, using the less and more viscous blood-simulated fluids, respectively. Fitting the drug release data to Korsmeyer-Peppas and first-order mathematical models provided further insight into the mechanism of rutin release and coating behavior under flowing conditions. More importantly, whole blood tests with our newly developed microfluidic platforms confirmed the hemocompatibility of our zein-based coating. In detail, in-flow and static studies on the blood cell behavior showed a significant reduction of platelet adhesion (∼73%) and activation (∼93%) compared to the stainless-steel substrate, confirming the benefits of using such naturally-derived coatings to avoid clogging. Overall, our microfluidic designs can provide a key practical tool for assessing polymer degradation and drug release from degradable matrices under flowing conditions, thus aiding future studies on the development of hemocompatible, controlled-release coatings for DESs.


Assuntos
Stents Farmacológicos , Zeína , Microfluídica , Estudos Transversais , Polímeros/química , Materiais Revestidos Biocompatíveis/química
7.
Opt Express ; 30(15): 26440-26454, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236835

RESUMO

The integration of micro-optics in lab on a chip (LOCs) devices is crucial both for increasing the solid angle of acquisition and reducing the optical losses, aiming at improving the signal-to-noise ratio (SNR). In this work, we present the thriving combination of femtosecond laser irradiation followed by chemical etching (FLICE) technique with CO2 laser polishing and inkjet printing to fabricate in-plane, 3D off-axis reflectors, featuring ultra-high optical quality (RMS ∼3 nm), fully integrated on fused silica substrates. Such micro-optic elements can be used both in the excitation path, focusing an incoming beam in 3D, and in the acquisition branch, harvesting the optical signal coming from a specific point in space. The flexibility of the manufacturing process allows the realization of micro-optics with several sizes, shapes and their integration with photonic circuits and microfluidic networks.

8.
Sci Rep ; 10(1): 12910, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737346

RESUMO

Integrating a light source inside a Lab-on-a-Chip (LOC) platform has always been as challenging as much as an appealing task. Besides the manufacturing issues, one of the most limiting aspects is due to the need for an energy source to feed the light emission. A solution independent of external energy sources can be given by Chemiluminescence (CL): a well-known chemical phenomenon in which light emission is achieved because of a chemical reaction. Here we present the fabrication and the characterization of a chemiluminescent light source, fully integrated on a microfluidic platform by means of the direct writing technique known as Femtosecond Laser Micromachining. The key advantage is the possibility to insert within LOC devices light sources with complete placement freedom in 3D, wide flexibility of the emitting source geometry and no external feeding energy. The characterization is carried out by investigating the effect of confining a chemiluminescent rubrene-based reaction in small volumes and the inject pressures impact on the emission spectra. Moreover, exploiting microfluidics principles, it's possible to move from the typical flash-type CL emission to a prolonged one (several hours). This allows to disengage bulky, external light sources, adding an extra step on the road to real device portability.

9.
Phys Chem Chem Phys ; 22(13): 6881-6887, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179881

RESUMO

Indium tin oxide (ITO) is a heavily doped semiconductor with a plasmonic response in the near infrared region. When exposed to light, the distribution of conduction band electron induces a change in the real and imaginary parts of the dielectric permittivity. The coupling of the electromagnetic waves with the electrons in the conduction band of metallic nanostructures with ultrashort light pulses results in a nonlinear plasmonic response. Such optical modulation occurring on ultrafast time scales, e.g. picosecond response times, can be exploited and used to create integrated optical components with terahertz modulation speed. Here, we present a photophysical study on a one dimensional ITO grating, realized using a femtosecond micromachining process, a very industrially accessible technology. The geometries, dimensions and pitch of the various gratings analyzed are obtained by means of direct ablation in a controlled atmosphere of a homogeneous thin layer of ITO deposited on a glass substrate. The pitch has been selected in order to obtain a higher order of the photonic band gap in the visible spectral region. Femtosecond micromachining technology guarantees precision, repeatability and extreme manufacturing flexibility. By means of ultrafast pump-probe spectroscopy, we characterize both the plasmon and inter-band temporal dynamics. We observe a large optical nonlinearity of the ITO grating in the visible range, where the photonic band gap occurs, when pumped at the surface plasmon resonance in the near infrared (1500 nm) region. All together, we show the possibility of all-optical signal modulation with heavily doped semiconductors in their transparency window with a picosecond response time through the formation of ITO grating structures.

10.
ACS Appl Mater Interfaces ; 11(31): 28125-28137, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356041

RESUMO

Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models. HEK-293 cells cultured on top of polymer pillars display a remarkable change in the cell morphology and a sizable enhancement of the membrane capacitance due to the cell membrane thinning in correspondence to the pillars' top surface, without negatively affecting cell proliferation. Electrophysiology properties and synapse number of primary neurons are also very well preserved. In perspective, high aspect ratio semiconducting polymer pillars may find interesting applications as soft, photoactive elements for cell activity sensing and modulation.


Assuntos
Técnicas de Cultura de Células , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Neurônios/metabolismo , Semicondutores , Animais , Células HEK293 , Humanos , Neurônios/citologia , Ratos
11.
Sci Rep ; 9(1): 1062, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705302

RESUMO

We demonstrate the all optical control of the molecular orientation of nematic liquid crystals confined in microfluidic channels engraved in lithium niobate. Microchannels are obtained by a novel approach based on femtosecond pulse laser micromachining carried on in controlled atmosphere. The combined effect of photovoltaic and pyroelectric fields generated by light in lithium niobate crystals on the liquid crystal orientation, is reported for the first time. The total space charge field and its dependence on the incident light intensity can be controlled by changing the direction of pump light propagation through the microfluidic chip. The results reported in this manuscript demonstrate that liquid crystals and lithium niobate can efficiently be combined in microfluidic configuration, in order to push forward a novel class of optofluidic devices.

12.
Micromachines (Basel) ; 10(1)2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597992

RESUMO

In recent years, there has been significant research on integrated microfluidic devices. Microfluidics offer an advantageous platform for the parallel laminar flow of adjacent solvents of potential use in modern chemistry and biology. To reach that aim, we worked towards the realization of a buried microfluidic Lab-on-a-Chip which enables the separation of the two components by exploiting the non-mixing properties of laminar flow. To fabricate the aforementioned chip, we employed a femtosecond laser irradiation technique followed by chemical etching. To optimize the configuration of the chip, several geometrical and structural parameters were taken into account. The diffusive mass transfer between the two fluids was estimated and the optimal chip configuration for low diffusion rate of the components was defined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...